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Abstract. The principles of radar are applied to the problem of measuring distances in 
rotating systems. Observations made by a single observer rotating with an inertial angular 
velocity o and at an inertial radius r are investigated and it is shown that the radius, as 
measured by the rotating observer, is given by I’ = r(1-  r2w2/c2)”2 where c is the velocity 
of light in uacuo. The angular velocity according to the rotating observer is shown to be 
U’= w ( 1 -  rzw2/c2)-”2. Also, piecemeal measurements of distances within rotating sys- 
tems are made by summing an infinite number of infinitesimal, contiguous measurements 
that have been collated by an observer in the inertial frame of the centre of rotation of the 
system. Such measurements are used to determine the length of a light path between two 
points in the rotating system and to measure the shortest distance between two points in the 
rotating system. These two measurements are found not to be identical. It is also shown 
that light signals used to measure infinitesimal piecemeal distances in a rotating system are 
emitted and received, according to an observer rotatingwith the system, in one and the same 
direction. 

Recent experiments by Davies and Jennison (1974, 1975) of signals reflected by 
mating minors have shown that the radius measured by a rotating observer must 
contract relative to that measured at the centre. This paper will be concerned with the 
dysisand some of the implications of this and similar phenomena in rotating systems. 

It is currently acknowledged that radar measurements can give very precise values 
distance between two points and it may also be argued that such measurements, 

lnvolVk the relation, measured in proper time, between cause and effect, are the most 
PhySiQlly meaningful definitions of distance. Using such radar m e a s “ n t s  we 
lnV@%te the consequences, within a rotating system, of the current standardization Of 
bunits of length and time (Sanders 1965) which imply the fundamental fact that: to 
&‘Yobsewer, whether or not accelerated, the speed of light in vucuo passing through 
bismition in every direction is c. Measurements made by radar techniques are of 
OeceSsitY hmvay measurements and distances are computed from the time interval 
that an electromagnetic signal takes for the two-way journey between two Points. 
‘Iberefor& in practice, CT defines the unit of length, where 7 is the proper local unit Of 

as may be derived from the frequency of a local atomic standard clock. 
a rotating system is kinematic and not gravitational, it is not necessary to Use 
relativity in the following analysis. 
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2. Observations made by a single rotating observer at inertial radius r 

D G Ash worth and R C Jennison 

Suppose we have a situation in which an observer is located at a constant distance lb 
the origin of an inertial system of coordinates, S ,  and that the observer is rotatingwifh 
constant angular velocity w with respect to S .  If we take the cylindrical cOordiw 
(r, 6, z, r )  for S ,  with the plane z = 0 as the plane in which the observer rotates, then 

ds2 = dr2+ r2 d02+dz2-cZ dt2 

for the line element and, if 7 is the proper time of the rotating observer and siorr 
6.1 = d6/dt, we find that 

ds2 = -c2 d7’= r2w2 dt2- c2 dt2 = -c2 dt2[1 - ( r 2 w 2 / ~ ’ ) ] .  

Hence, 

if o and r are maintained constant during the measurement, and t is the inertidor 
central time (see for example Arzelibs 1966). Defining the ‘radius’ measured by & 
rotating observer as r’= $CT, gives us a method of relating the observer’s radius to the 
inertial radius. T, is the time interval of the standard atomic clock carried bythe 
observer, between the emission of a light signal to the centre and its subsequen; 
absorption by the same observer. The ray geometry in the inertial system is such that 
the signal is emitted at a point at radius r, scattered at the centre, and received ata  
different point at the same radius r. Thus in the inertial system r = 4 ct, where tl  ish 
time interval between emission and reception as measured by a standard clock at ra 
relative to S. It therefore follows from equation (1) that 

(21 

This relationship was first given by Jennison (1964) who showed that it followed 
from a logical argument using transponders and telemetered clocks. Recent expen- 
ments by Davies and Jennison have confirmed that transponders in rotation act 6 

predicted, they compute that a disc 10 cm in diameter rotating at 150 rad s-’ exhibits8 
relative contraction of 5 parts in 10’’ in agreement with equation (2). 

We note that if w is maintained constant and r’ is measured by radar it is evident 
from equation (2) that as r increases from zero, r’ increases at first but reach61 
maximum when r = c / o  J2, ie where r’ = f c/w, and then approaches zero again in 
limit rw + c. 

The angular velocity, U’,  measured by the rotating observer may be obtained b 
utilizing the common assumption of relativity theory that observers in two domi@ 
assign to each other equal but opposite velocities. Hence, the velocity of the r0tabo.e 
observer, v, as measured by an observer in S is given by 

Therefore, by equation (2) 

( V I  = rw = r’w’. 

U’=  O[I -(r2w2/c2)]-1’2. 

This relationship may also be obtained from an experimental result by Davies ad 
Jennison to an accuracy of about one part in It differs from the theoretid redtd 
Imine (1964) who obtained 0 = o[l - ( r 2 ~ 2 / ~ 2 ) ] - 1  and claimed that this would be ’& 
angular velocity measured by local experiments by an observer in the rotating System’. 



37 

*pS result is clearly inconsistent with the results of the experiments by Davies and 
@l&n- n e  angular velocity that he derives does not appear to be an experimentally 
Mmble quantity. 

Sumeying in rotating systems 

measurements of ray paths in synchronously rotating systems 

F~~ 1 is drawn in an inertial frame, S ,  at rest relative to the centre, 0, of a syn- 
rotating disc and all distances on the diagram are measured in tllis frame. 

&pi& the straight line path of a light ray in the inertial system, S ,  and we shall 

Fwe 1. Ray paths (AC, CD), between concentric circles inscribed upon a synchronously 
rotating disc, according to observers in the inertial frame of the centre of the disc. 

surne that an observer rotating with the disc wishes to determine the length of the 
torresponding curved path of the light ray in the frame rotating with the disc. The 
kngtbof the path in the rotating frame may be determined by the rotating observer if he 
aseS a method of successive radar measurements. The rotating observer crosses the 
Pathof the incident light ray once every revolution of the disc. As he crosses its path he 

short-range radar measurement along the direction of propagation of the light 
BY making an infinite number of such infinitesimal, contiguous measurements 

hgthe  light path the rotating observer may establish the length of the light path in the 
mting system. This is the method used in the mathematical treatment given below 

is precisely in agreement with the treatment of Arzeliks (1966, p 219). An 
&Wive approach leading to an identical result would be to fire a very short laser 
*across the surface of the rotating disc such that the path of the pulse would be 
*'$b marked on its surface. The length of this light path could then be determined 
by the rotating observer if he again made an infinite number of infinitesimal, contiguous 
*measurements along the path and then summed them. 

FmmfikVre 1, X is any point on AB, or AB produced, B being the point of closest 
Qmachofthe light ray to the centre. The rotating observer, when coincident with A, 
woutalight signal along AC and receives the reflected signal from C when he has 
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moved to point D in the inertial system of the centre but has remained at rest in 118 
rotating system. He then goes to point C and sends a signal to a point E and receives$ 
back when he has moved to some other point F in the inertial system of the centre, 
repeats the process many times until he has traversed AX in a series of steps. The& 
taken for the signal to travel ACD as measured by the rotating observer’s own cl% 
multiplied by the velocity of light, c, may be interpreted by the rotating observeTB 
twice the radar distance to C. All other measurements are Similarly interpreted and$ 
distance from A to X in the rotating frame may be calculated by summing dl 
Gontiguous distance measurement. This procedure is equivalent to the standard 
experimental practice of calibrating extended distances by contiguous italons ( D i ~  
bum 1952). 

It can readily be shown from the geometry of figure 1 that if A x  = AC, Ay 
Ar = GC and Ar = A 4 / o  are considered as infinitesimals then 

D G Ashworth and R CJennison 

and 
A y  = CAt - Ax. 

gcAt 1 = r [ l  + ( a o / ~ ) ] ( r ’ - a ’ ) - ’ / ~ [ l  - ( r202/cz) ] - ’Ar .  

&AT =[1 * (ao/c)]r(r’-  ~ ’ ) - ’ / ~ [ 1  - (r ’o’ /~~)] -~ / ’Ar.  

(1 
Substituting for A x  and Ay from equations (3) and (5 )  into equation (4), we find that 

(Si 
But, we know that AT = At(1 - r ’ 0 2 / c 2 ) ’ / 2  from equation ( l ) ,  therefore, 

0 
Defining $ CAT as an incremental distance AL’ in the rotating frame (ie as the radar 
distance to C from the mid-point of the arc AD according to the rotating observer) ad 
letting AL’+ 0 as Ar + 0 we have that L”= AB in the rotating system is given by 

L”=X lim AL: 
; Ara-O 

hence 

L”= [ l ~ ( ( a w / ~ ) ] r ( r ’ - a ’ ) - ’ ~ ~ [ l  - ( r ’ o z / c 2 ) ] - 1 ~ ’  dr l 
which, upon integration, yields 

L”= (c/o)[l  zt((ao/c)] sin-’{(o/c)(r’- a2)1 /2 [1  - (o2a2/c2)~- ’ / ’ } .  

If we construct BO produced and let it meet the circlebf radius c / o  at a pointH. 
then B H = ( c / o ) * a .  Also, m is defined to be the length, in the inertial system of? 
centre, of the chord of the circle on BH as diameter, joining B and a point of intersecno” 
A of that circle with the circle centre 0 and radius r (figure 2). Hence, by geometvWe 
may express 

m =[I * ( o ~ / c ) ] ( r ’ - a ~ ) ’ / ~ [ l  -(w2u2/c2)]-’/’  

L” =[(c/o) * a ]  sin-’{m/[(c/w) * a ] }  
giving 

which is an arc of a circle of radius 5 [ (c /o)*  a ]  with centre ; [ ( c / o )  F a]  from 
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F i e  2. The geometry of a ray path according to piecemeal measurements made by 
observers upon the rotating disc. The ray path follows the circular arc HAB in the upper 
diagram and BAH in the lower diagram. 

’Ihesigndepends upon the direction of rotation. We have so far measured L”=AB 
in the rotating system but BX may similarly be measured, thus enbabling AX to be 
obtained. It is important to note that L” is not the minimum distance between A and B; 
what we have measured is the path distance along a ray of light, ie along a null geodesic, 
bT contiguous short-range measurements. 

It is also instructive to calculate the angle of emission and angle of reception of the 
Lghtsignal used for each of the piecemeal measurements. In S, from figure 1, these 

are given by LOAC = CY and LODC = p respectively. Therefore, 

sin a = a / r  
and 

(9) 

cos /3 = Ar/Ay. (10) 
for cAt from equation ( 5 )  into equation (6) gives 

A y  =2r [ l*a (w/c ) ] ( r2 -a2) -”2 [1  - ( r2w2/c2) ] - ’Ar-Ax.  

S’Mtuting for A x  from equation ( 3 )  and k i n g  equation (10) gives 

sin /3 = r-‘{2r2(w/c)  * a[ l  +(r2w2/c2)1)[1 + ( r 2 w 2 / c 2 )  * (2uw/c)I-’ .  
( 1 1 )  

‘n0%?fhe angle between the velocity vector at A and the direction of motion Of the 
em’ttedlight signal from A by OA and denoting the angle between the velocity Vector at 
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D and the direction of motion of the received light signal at D by OD we have fromfisrm 
1 and equations (9) and (1 1) that 

D G Ashworth and R C Jennison 

COS e, = $a/r (12) 

cos OD = r-’{(2r2w/c)* a [ l+  (r’02/c2)]X1 + (r202/c2) * (2ao/c)l-l, 

and 

(Q 
The rotating observer will measure the angles of emission and reception as 0; and& 
which are related to e,., and 8D through the aberration formula (see, for examplr 
Ditchburn 1952, Jennison 1963, 1964): 

COS e’=[cos ~ - ( u / c ) ] [ ~ - ( U / C ) C O S  el-’. (14) 

Therefore, by equations (12)-(14) and remembering that ZI = rw, we find that 

cos 8; = -r-’(wr2rt ac)(c * ao)-’ (1R 

hence, 

e;=e;+r. (17) 

According to the rotating observer therefore, the light signals used to meaun 
infinitesimal piecemeal distances on the disc are emitted and received in one and the 
same direction. 

4. Piecemeal measurements of geodesics in synchronously rotating systems 

Here we adopt the simple definition of a geodesic as the shortest distance between 
points measured according to the principle stated in the introduction. Firstly, kt a 
measure the minimum distance Ar’ between two concentric circles of inertial radii 
r+Ar,  centre 0, according to a rotating observer situated r +Ar from the centre of& 
rotating system. Again we shall perform our measurements by using a light Si$ 
emitted by the rotating observer at A, scattered at C and received again by the rota& 
observer when he has reached D in the inertial system of the centre (see figure 1). we 
seek the minimum distance between two concentric circles. Taking Ax = Ay in s mak6 
the proper time interval between emission and reception of the light signals, aCm@ 
to the rotating observer, also a minimum. Hence, AT must be a mini” 
Differentiating equation (7) with respect to a and setting dAT/da = O  we findtbat 
(taking the lower sign in all cases) 

a = wr2/c (18) 

for minimum path distance. Substituting for a from equation (18) into equation (7)at 
find that 
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%bydefinition, $ CAT E Ar’ where Ar’ is the infinitesimal separation of the two radii as 
@d by the rotating observer. Hence, 

w,sut&tuting a = d / c  into equations (15) and (16) gives cos 0; =cos et, = 0 and b, e:= 4 T, 6; = 4 T by equation (17). The rotating observer therefore measures 
distance between concentric circles to be perpendicular to the velocity 

sedor and to be equal in magnitude to the inertial minimum distance between 
mnmc circles. Let us suppose that the rotating observer repeats these measure- 
m~ dong the length of a single inertial radius. This piecemeal ‘geodesic’ radius Gi, 
-Wd by the rotating observer will be given by 

Ar’ = Ar. (19) 

G; = lim Ar: 
i Ari-0 

&j&,on account of equation (19), can be written in the form 

G; =I lim Ari = r, 
i Ari-0 

theinertial radius. Radial ‘geodesics’ are therefore always at right angles to the velocity 
d o r  and equal in length to the radius measured by an observer at rest relative to the 
&id frame of reference, S, of the centre. G:’ is the minimum distance between a 
pint on the rotating disc and the centre of the disc according to piecemeal measure- 
mentsmade on the disc. It differs from the piecemeal length of a light path between the 
mepoint and the centre which may be obtained by setting a = 0 in equation (8)’ giving 
L: =(c/o) sin-’(ro/c). L: is the length measured piecemeal along the path of a null 
geodesic, whereas G‘i is the length measured piecemeal along the path of a geodesic. 

Geodesics between any two points on a rotating disc may be obtained by referring to 
b e  2. To an observer at A the piecemeal geodesic AG’ between A and B will be 
alongAB. But, the element of the geodesic at A between A and 0 is, as we have just 
pved, equal to Ar therefore, 

cos(L0AB) = Ar’/AG’= Ar/AG’ 

aml from figure 2 ,  

&s by geometry 

a2=r2+m2-2rpncos(LOAB). 

m =[I +(wa/c)](r’-~~)”~[1 - ( W ~ U ’ / ” ) ~ - ’ ’ ~  

COS(LOAB) = r-l(r2- a2)’I2[1 - ( ~ ’ a ~ / c  2 )] -112 

*when substituted into equation (21), gives 

‘tbyeqMation (201, 

AG’ = r(r2-a2)-1’2[1 -(02a2/c2)]112Ar. (22) 
fiegeodesic, G“, between A and B in the rotating system is given by 

G“=C lim AG: 
i Ari-0 
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hence 

GIr= Ja’ r(r2-aZ)-”’[I - ( ~ ~ a ’ / c ’ ) ] ~ ’ ’  dr 

which, upon integration, yields 
G“= [I - (w2az/c2)J1/2(rz- a2)1/2 

which reduces to G‘: = r for the length of the piecemeal geodesic radius when Q issa 
equal to zero. 

5. Condasions 

The preceding sections clearly indicate the necessity for precise definitions of how and 
what one is measuring in rotating systems. In § 2, which deals with ‘measurementsata 
distance’ by means of radar signals and involves no integration or summation of sa 
piecemeai measurements, we have shown that the radius of a rotating disc, equation@, 
as measured by an observer on the disc, quite clearly differs from that measured in th 
frame of reference of an observer stationary with respect to the centre of the dqm 
agreement with measurements by Davies and Jennison. But, on the other hand, ifradar 
techniques are employed to measure the length of a geodesic radius on the disc$ 
means of summing small piecemeal sections of the geodesic we find in 0 4 that tbir 
results in an identical length to that measured by an observer in a frame stationarywith 
respect to the centre. What, therefore, do we mean by ‘radius’ in the context oia 
rotatingsystem? From what has already been stated it would seem logical toexpectthat 
all electromagnetic effects observed or measured by a single observer fixed at so= 
point in the rotating system must be interpreted as in 4 2, ie in terms of the proper tim 
of the observer (Jennison has extended this to mechanical effects). Therefore. ail 
distance measurements made by the rotating observer to points outside the r o t a h  
system, provided that these distances, d, when measured in the inertial frame of tbe 
centre are large compared to the radius, r, of the rotating system, will be equalto 
d[l -(r202/c2)]1/2. Thus, the ‘universe’ according to the rotating observer will br 
reduced in radius by the factor [l - (r2w2/c2)]”’ and will, in the limit ru + c, be redud 
to a singularity. This result may be applicable to rotating field models of the fundamen- 
tal particles and may then be associated with the spatial uncertainty of some inteak 
tions. 

It can also be seen from 0 4, equation (23), that the ‘geodesics’ of the disc to rota@ 
observers define a non-Euclidean space. The relationship between the geometry of the 
disc according to observers upon it and those in the inertial frame of the centre isonb’d 
use when it is necessary to perform transformations from the rotating system to tk 
inertial frame of reference of the centre, or vice versa. These transformations are RPM 

rewired when proper measurements are made by single observers. 
The analysis of § 3 points out the difference between geodesics and null geodesisin 

the rotating system and indicates quite clearly the difference in length between them 

measurements. It is concluded in § 3 that the light signals used to measure infinitesimal 
Piecemeal distances on the disc are emitted and received, according to the rotaon! 
observer, in one and the same direction, just as the light signals used for measuremena 
in ordinary flat Euclidean space would be. Light signals used to measure 

when they are measured by summing an infinite number of infinitesimal piegm ed 
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-,on the other hand, are emitted and received in very different directions and it 
kbere bat one of the major differences arises between measurements performed by 
wen in constrained circular motion and measurements performed by observers in 
&-nstrained inertial motion to which the Lorentz transformations may be applied 
@&ended periods of time. This analysis shows, however, that these same transfor- 
ptions may be applied instantaneously to derive the correct experimental results for 
*a in rotation. 

M&edinproof. We note that in Davies and Jennison (1975) on page 1394, line 10 
phon (1)’ should, of course, read ‘the first equation’. 
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